

DZone, Inc. | www.dzone.com

By James Sugrue

ABOUT UML

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 U

M
L

 w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#112

CONTENTS INCLUDE:
n	 About UML
n	 Structural Diagrams
n	 Behavioral Diagrams
n	 Interaction Diagrams
n	 Hot Tips and more...

Hot
Tip

UML Tools
There are a number of UML tools available, both
commercial and open source, to help you document
your designs. Standalone tools, plug-ins and UML
editors are available for most IDEs.

The Unified Modeling Language is a set of rules and notations
for the specification of a software system, managed and
created by the Object Management Group. The notation
provides a set of graphical elements to model the parts of
the system.

This Refcard outlines the key elements of UML to provide you
with a useful desktop reference when designing software.

Get over 90 DZone Refcardz
FREE from Refcardz.com!

Getting Started with UML

Diagram Types
UML 2 is composed of 13 different types of diagrams as
defined by the specification in the following taxonomy.

STRUCTURAL DIAGRAMS

Class Diagrams
Class diagrams describe the static structure of the classes
in your system and illustrate attributes, operations and
relationships between the classes.

Modeling Classes
The representation of a class has three compartments.

	

Figure 1: Class representation

From top to bottom this includes:
 • �Name which contains the class name as well as the

stereotype, which provides information about this
class. Examples of stereotypes include <<interface>>,
<<abstract>> or <<controller>>.

 • �Attributes lists the class attributes in the format
name:type, with the possibility to provide initial values
using the format name:type=value

 • �Operations lists the methods for the class in the format
method(parameters):return type.

Operations and attributes can have their visibility annotated as
follows: + public, # protected, - private, ~ package

Relationship Description

Dependency

“...uses a…”

A weak, usually transient, relationship that illustrates that a
class uses another class at some point.

Figure 2: ClassA has dependency on ClassB

Association

“…has a...”

Stronger than dependency, the solid line relationship
indicates that the class retains a reference to another class
over time.

Figure 3: ClassA associated with ClassB

Aggregation

“…owns a…”

More specific than association, this indicates that a class is a
container or collection of other classes. The contained classes
do not have a life cycle dependency on the container, so
when the container is destroyed, the contents are not. This is
depicted using a hollow diamond.

Figure 4: Company contains Employees

Hot
Tip

Interfaces
Interface names and operations are
usually represented in italics.

	

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

DZone, Inc. | www.dzone.com

2
Getting Started with UML

Composition

“…is part of...”

More specific than aggregation, this indicates a strong life
cycle dependency between classes, so when the container is
destroyed, so are the contents. This is depicted using a filled
diamond.

Figure 5: StatusBar is part of a Window

Generalization
“…is a…”

Also known as inheritance, this indicates that the subtype is a
more specific type of the super type. This is depicted using a
hollow triangle at the general side of the relationship.

Figure 6: Ford is a more specific type of Car

Association Classes
Sometimes more complex relationships exist between classes,
where a third class contains the association information.

	

Figure 7: Account associates the Bank with a Person

Annotating relationships
For all the above relationships, direction and multiplicity can
be expressed, as well as an annotation for the relationship.
Direction is expressed using arrows, which may be bi-directional.

The following example shows a multiple association, between
ClassA and ClassB, with an alias given to the link.

	

Figure 8: Annotating class relationships

Relationships can also be annotated with constraints to
illustrate rules, using {} (e.g. {ordered}).

Hot
Tip

Notes
Notes or comments are used across all
UML diagrams. They used to hold useful
information for the diagram, such as
explanations or code samples, and can
be linked to entities in the diagram.

	

Figure 13: Nested component diagram showing use of ports

Composite Structure Diagrams
Composite structure diagrams show the internal structure of a
class and the collaborations that are made possible.

The main entities in a composite structure diagram are parts,
ports, connectors, collaborations, as well as classifiers.

	

Object Diagrams
Object diagrams provide information about the relationships
between instances of classes at a particular point in time. As
you would expect, this diagram uses some elements from class
diagrams.

Typically, an object instance is modeled using a simple
rectangle without compartments, and with underlined text of
the format InstanceName:Class

	
 Figure 9: A simple object diagram

The object element may also have extra information to model
the state of the attributes at a particular time, as in the case of
myAccount in the above example.

Component Diagrams
Component diagrams are used to illustrate how components
of a system are wired together at a higher level of abstraction
than class diagrams. A component could be modeled by one
or more classes.

A component is modeled in a rectangle with the
<<component>> classifier and an optional component icon:

Figure 11: AccountManagement depends on the CreditChecker services

Using the ball and socket notation, required or provided
interfaces are illustrated as follows

Figure 12: Required and provided interface notation

Port Connectors
Ports allow you to model the functionality that is exposed to
the outside world, grouping together required and provided
interfaces for a particular piece of functionality. This is
particularly useful when showing nested components.

	

Figure 10: UML representation of a single component

Assembly Connectors
The assembly connector can be used when one component
needs to use the services provided by another.

	

	

http://www.dzone.com
http://www.refcardz.com

